
Maika Edberg, Remy Seassau November 27, 2022

CSE301 FINAL PROJECT - SAT SOLVER
A smart SAT solver in Haskell



PROJECT OVERVIEW

As most SAT solvers, ours is based on backtracking. We started from a simple
implementation and added on other optimisations afterwards.

Here is a list of our optimisations:

Optimisation Name Works
Unit Propagation Yes
Pure Literal Elimination Yes
Greedy Branching Heuristics Yes
Two Watched Literals No
Subsumption Yes
Self-Subsumption Yes
3-CNF No

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 2/13



TESTING

We decided to test our solver against Minisat as a reference. We resorted to python
scripting in order to bulk-test on an assortment of cnf files.

We used the time reported directly by Minisat and we timed our own solver directly in
python.

We first tested the correctness of our solver by comparing our satisfiability results with
Minisat’s.

N.B. All times above 30 seconds were cut short and simply reported as 30.

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 3/13



FRAME OF REFERENCE

Figure: Unit Propagation vs Minisat

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 4/13



FRAME OF REFERENCE

Figure: Unit Propagation vs Minisat (zoomed)

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 4/13



FRAME OF REFERENCE

Figure: Unit Propagation vs Minisat (zoomed x2)

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 4/13



ALL OPTIMISATIONS

Figure: Unit Propagation vs All Optimisations

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 5/13



ALL OPTIMISATIONS

Figure: Unit Propagation vs All Optimisations w/o Greedy

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 5/13



SUBSUMPTION

simplify()
do

S0 = {set of clauses containing a literal occurring in some
clause in Added}

do
S1 = {set of clauses containing a literal occurring

negatively in some clause in Added} ∪ Added ∪ Strengthened
clear Added and Strengthened
for each C ∈ S1 do SelfSubsume(C)
propagateToplevel()

while (Strengthened ̸= ∅)
for each C ∈ S0 not deleted do subsume(C)
do

S = Touched; clear Touched
for each x ∈ S do maybeEliminate(x)

while Touched ̸= ∅
while Added ̸= ∅

simplify()
do

S1 = {set of clauses containing a literal occurring
negatively in some clause in Added} ∪ Added ∪ Strengthened

clear Added and Strengthened
for each C ∈ S1 do SelfSubsume(C)
propagateToplevel()

while (Strengthened ̸= ∅)
for each C not deleted do subsume(C)

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 6/13



SUBSUMPTION

Figure: Subsumption combinations vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 7/13



SUBSUMPTION

Figure: Subsumption combinations vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 7/13



3-CNF

We wanted to try applying 3CNF with the idea that it could potentially increase the use of
Unit Propagation.

However, we are prefectly content with small clauses, so we did not implement 3-CNF, but
rather max(3)-CNF.

Unfortunately the implementation is lacking in correctness as we currently fail to not find
solutions.

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 8/13



3-CNF

Figure: 3-CNF vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 9/13



3-CNF

Figure: 3-CNF vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 9/13



UNIT PROPAGATION

Figure: Unit Propagation vs Barebones Solver

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 10/13



UNIT PROPAGATION

Figure: Unit Propagation vs Barebones Solver

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 10/13



PURE LITERAL ELIMINATION

Figure: PLE+UP vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 11/13



PURE LITERAL ELIMINATION

Figure: PLE+UP vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 11/13



GREEDY BRANCHING HEURISTICS

Figure: Greedy+UP vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 12/13



GREEDY BRANCHING HEURISTICS

Figure: Greedy+UP vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 12/13



TWO WATCHED LITERALS

Figure: TwoWatched vs UP

ÉCOLE POLYTECHNIQUE – CSE301 Final Project - SAT Solver 13/13


