
Rémy Seassau November 27, 2022

MODULAR DECOMPOSITION FOR LOGIC
An interactive tool for the modular decomposition of graphs

INTRODUCTION

There exists a well know correspondence between formulae and cographs

An example:
P = (a⊗ b)` (c⊗ d)

GP :
a b

c d

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 2/17

INTRODUCTION

There exists a well know correspondence between formulae and cographs

An example:
P = (a⊗ b)` (c⊗ d)

GP :
a b

c d

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 2/17

THE QUESTION

This correspondence has been extended into a proof system on arbitrary undirected graphs
called GS (graphic proof system) [1].

Current work is being done on more logic systems based on graphs.

This motivates the question, how does one study a graph’s structure?

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 3/17

THE ANSWER

Such a graph theoretical tool exists, and is called the modular decomposition of a
graph.

Modules are to a graph what subformulas are to a formula.

Back to our example:
a b

c d

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 4/17

THE ANSWER

Such a graph theoretical tool exists, and is called the modular decomposition of a
graph.

Modules are to a graph what subformulas are to a formula.

Back to our example:
a b

c d

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 4/17

PROBLEM DEFINITION

Given a graph, can we provide a nice way for logicians (or anyone else) to obtain it’s
modular decomposition?

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 5/17

WHAT DO WE MEAN BY GRAPH?

Directed or undirected?

Both!
Do we allow self loops? No
Are we restricted to cographs? No
What kind of vertices? Labelled

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 6/17

WHAT DO WE MEAN BY GRAPH?

Directed or undirected? Both!

Do we allow self loops? No
Are we restricted to cographs? No
What kind of vertices? Labelled

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 6/17

WHAT DO WE MEAN BY GRAPH?

Directed or undirected? Both!
Do we allow self loops?

No
Are we restricted to cographs? No
What kind of vertices? Labelled

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 6/17

WHAT DO WE MEAN BY GRAPH?

Directed or undirected? Both!
Do we allow self loops? No

Are we restricted to cographs? No
What kind of vertices? Labelled

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 6/17

WHAT DO WE MEAN BY GRAPH?

Directed or undirected? Both!
Do we allow self loops? No
Are we restricted to cographs?

No
What kind of vertices? Labelled

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 6/17

WHAT DO WE MEAN BY GRAPH?

Directed or undirected? Both!
Do we allow self loops? No
Are we restricted to cographs? No

What kind of vertices? Labelled

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 6/17

WHAT DO WE MEAN BY GRAPH?

Directed or undirected? Both!
Do we allow self loops? No
Are we restricted to cographs? No
What kind of vertices?

Labelled

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 6/17

WHAT DO WE MEAN BY GRAPH?

Directed or undirected? Both!
Do we allow self loops? No
Are we restricted to cographs? No
What kind of vertices? Labelled

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 6/17

GRAPH DEFINITION

A graph G = (VG, EG) is an ordered pair where VG is a set of vertices and EG is a set of
pairs of elements of VG.

If G is undirected (resp. directed) then the pairs in EG are unordered (resp. ordered).

We say that G is L-labelled if there exists an injection lG : VG → L.

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 7/17

GRAPH DEFINITION

A graph G = (VG, EG) is an ordered pair where VG is a set of vertices and EG is a set of
pairs of elements of VG.

If G is undirected (resp. directed) then the pairs in EG are unordered (resp. ordered).

We say that G is L-labelled if there exists an injection lG : VG → L.

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 7/17

GRAPH DEFINITION

A graph G = (VG, EG) is an ordered pair where VG is a set of vertices and EG is a set of
pairs of elements of VG.

If G is undirected (resp. directed) then the pairs in EG are unordered (resp. ordered).

We say that G is L-labelled if there exists an injection lG : VG → L.

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 7/17

MODULE DEFINITION

A module M of a graph G is a subgraph of G, i.e. (VM , EM) ⊆ (VG, EG) such that

∀x, y ∈ VM ,∀z ∈ VG \ VM :

(x, z) ∈ EG ⇐⇒ (y, z) ∈ EG and (z, x) ∈ EG ⇐⇒ (z, y) ∈ EG

The edge set of M is the largest subset of EG that contains all vertices in VM .

The trivial modules of G are the empty graph (∅,∅), the graphs where VM are singletons
and G itself. A module M of G is maximal if the only module M ′ such that VM ⊆ V ′

M is G
itself.

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 8/17

MODULE DEFINITION

A module M of a graph G is a subgraph of G, i.e. (VM , EM) ⊆ (VG, EG) such that

∀x, y ∈ VM , ∀z ∈ VG \ VM :

(x, z) ∈ EG ⇐⇒ (y, z) ∈ EG and (z, x) ∈ EG ⇐⇒ (z, y) ∈ EG

The edge set of M is the largest subset of EG that contains all vertices in VM .

The trivial modules of G are the empty graph (∅,∅), the graphs where VM are singletons
and G itself. A module M of G is maximal if the only module M ′ such that VM ⊆ V ′

M is G
itself.

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 8/17

MODULE DEFINITION

A module M of a graph G is a subgraph of G, i.e. (VM , EM) ⊆ (VG, EG) such that

∀x, y ∈ VM , ∀z ∈ VG \ VM :

(x, z) ∈ EG ⇐⇒ (y, z) ∈ EG and (z, x) ∈ EG ⇐⇒ (z, y) ∈ EG

The edge set of M is the largest subset of EG that contains all vertices in VM .

The trivial modules of G are the empty graph (∅,∅), the graphs where VM are singletons
and G itself. A module M of G is maximal if the only module M ′ such that VM ⊆ V ′

M is G
itself.

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 8/17

PRIME GRAPHS

We say that a graph G is prime if |VG| ≥ 2 and all of the modules of G are trivial.

Here are all the directed prime graphs with |VG| = 2:

` : • • ⊗ : • • ◁ : • •

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 9/17

PRIME GRAPHS

We say that a graph G is prime if |VG| ≥ 2 and all of the modules of G are trivial.

Here are all the directed prime graphs with |VG| = 2:

` : • • ⊗ : • • ◁ : • •

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 9/17

COMPOSITION OF GRAPHS

Let G be a graph with n vertices VG = {v1, . . . , vn} and let H1, . . . ,Hn be n graphs such
that ∀i, j < n, i ̸= j =⇒ VHi ∩ VHj = ∅.
The composition of H1, . . . ,Hn via G is the graph G(|H1, . . . ,Hn|) where each vertex
vi of G has been replaced by the graph Hi.

Theorem [2]: Let G be a graph such that |VG| = n ≥ 2. Then, there are non-empty
graphs H1, . . . ,Hn and a prime graph P such that G = P (|H1, . . . ,Hn|).

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 10/17

COMPOSITION OF GRAPHS

Let G be a graph with n vertices VG = {v1, . . . , vn} and let H1, . . . ,Hn be n graphs such
that ∀i, j < n, i ̸= j =⇒ VHi ∩ VHj = ∅.
The composition of H1, . . . ,Hn via G is the graph G(|H1, . . . ,Hn|) where each vertex
vi of G has been replaced by the graph Hi.

Theorem [2]: Let G be a graph such that |VG| = n ≥ 2. Then, there are non-empty
graphs H1, . . . ,Hn and a prime graph P such that G = P (|H1, . . . ,Hn|).

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 10/17

CONSTRUCTING A MODULAR DECOMPOSITION TREE

a b

c d

→

`
a b c d →

`
⊗ ⊗

a b c d

Which is the same as

GP → `(a b , c d) → `(⊗(a, b),⊗(a, b))

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 11/17

CONSTRUCTING A MODULAR DECOMPOSITION TREE

a b

c d
→

`
a b c d

→

`
⊗ ⊗

a b c d

Which is the same as

GP → `(a b , c d) → `(⊗(a, b),⊗(a, b))

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 11/17

CONSTRUCTING A MODULAR DECOMPOSITION TREE

a b

c d
→

`
a b c d →

`
⊗ ⊗

a b c d

Which is the same as

GP → `(a b , c d) → `(⊗(a, b),⊗(a, b))

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 11/17

CONSTRUCTING A MODULAR DECOMPOSITION TREE

a b

c d
→

`
a b c d →

`
⊗ ⊗

a b c d

Which is the same as

GP → `(a b , c d) → `(⊗(a, b),⊗(a, b))

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 11/17

CONNECTIVES

Recall the prime graphs of size 2:

` : • • ⊗ : • • ◁ : • •

We introduce a family of graphs we call the connectives. These generalize the prime
graphs of size 2 to graphs of size n.

`n: The graph of n vertices with no edges
⊗n: The graph of n vertices where all edges are connected
◁n: The graph of n vertices where the edges form a transitive chain going through all
of the vertices

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 12/17

EXAMPLES

`4 :
• •

• •
⊗4 :

• •

• •
◁4 :

•

• •

•

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 13/17

COMPUTING THE MODULAR DECOMPOSITION

condensing = true;
while condensing do

do
prevGraph = graph;
graph = compressConnectives(graph);

while prevGraph ̸= graph;

graph = compressSmallestMaximalModules(graph);
if length(Vgraph) == 1 then

condensing = false;
end

end
return graph;

Algorithm 1: Modular Decomposition Overview [3]

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 14/17

FINDING THE CONNECTIVES

Finding the connective modules is quite easy, we just iterate over all possible pair of
vertices of the graph vi, vj and check that the following holds:

suc(vi) \ {vj} = suc(vj) \ {vi} and pred(vi) \ {vj} = pred(vj) \ {vi}

If so, we just need to check if the edges (vi, vj) and/or (vj , vi) exists to determine the type
of connective (`, ⊗ or ◁) the vertices are composed by.

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 15/17

FINDING THE SMALLEST MAXIMAL MODULES

In order to find the smallest maximal modules of a graph, we find all of the maximal
modules with at least 2 vertices and take the smallest non-intersecting ones.

We thus iterate over all sets of vertices for which there exists an edge and follow these
steps:

1 We look at the vertices that are connected to one but not all of the vertices in our set
2 If there are none then we are done, otherwise add them to our set and repeat step 1

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 16/17

REFERENCES

[1] M. Acclavio, R. Horne, and L. Straßburger. Logic beyond formulas: a proof system on
graphs. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 38–52. ACM, July 8, 2020.

[2] A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures: A
Framework for Decomposition and Transformation of Graphs. WORLD SCIENTIFIC,
Aug. 1999.

[3] L. James, R. Stanton, and D. Cowan. Graph decomposition for undirected graphs.
Utilitas Mathematica, Jan. 1, 1972.

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic 17/17

	References

