

MODULAR DECOMPOSITION FOR LOGIC

An interactive tool for the modular decomposition of graphs

Rémy Seassau

November 27, 2022

INTRODUCTION

An example:

$$P = (a \otimes b) \, \mathfrak{V} \, (c \otimes d)$$

• There exists a well know correspondence between formulae and *cographs*

ÉCOLE POLYTECHNIQUE – Modular Decomposition for Logic

An example:

$$P = (a \otimes b) \, \mathfrak{V} \, (c \otimes b)$$

 $G_P:$ c - d

d

• There exists a well know correspondence between formulae and *cographs*

INTRODUCTION

This correspondence has been extended into a proof system on *arbitrary undirected graphs* called GS (graphic proof system) [1].

Current work is being done on more logic systems based on graphs.

This motivates the question, how does one study a graph's structure?

Such a graph theoretical tool exists, and is called the **modular decomposition** of a graph.

Modules are to a graph what subformulas are to a formula.

Such a graph theoretical tool exists, and is called the **modular decomposition** of a graph.

Modules are to a graph what subformulas are to a formula.

Back to our example:

Given a graph, can we provide a nice way for logicians (or anyone else) to obtain it's modular decomposition?

• Directed or undirected?

• Directed or undirected? Both!

- Directed or undirected? Both!
- Do we allow self loops?

- Directed or undirected? Both!
- Do we allow self loops? No

- Directed or undirected? Both!
- Do we allow self loops? No
- Are we restricted to cographs?

- Directed or undirected? Both!
- Do we allow self loops? No
- Are we restricted to cographs? No

- Directed or undirected? Both!
- Do we allow self loops? No
- Are we restricted to cographs? No
- What kind of vertices?

- Directed or undirected? Both!
- Do we allow self loops? No
- Are we restricted to cographs? No
- What kind of vertices? Labelled

GRAPH DEFINITION

A graph $G = (V_G, E_G)$ is an ordered pair where V_G is a set of vertices and E_G is a set of pairs of elements of V_G .

GRAPH DEFINITION

A graph $G = (V_G, E_G)$ is an ordered pair where V_G is a set of vertices and E_G is a set of pairs of elements of V_G .

If G is undirected (resp. directed) then the pairs in E_G are unordered (resp. ordered).

GRAPH DEFINITION

A graph $G = (V_G, E_G)$ is an ordered pair where V_G is a set of vertices and E_G is a set of pairs of elements of V_G .

If G is undirected (resp. directed) then the pairs in E_G are unordered (resp. ordered).

We say that G is L-labelled if there exists an injection $l_G \colon V_G \to L$.

MODULE DEFINITION

A module M of a graph G is a subgraph of G, i.e. $(V_M, E_M) \subseteq (V_G, E_G)$ such that

MODULE DEFINITION

A module M of a graph G is a subgraph of G, i.e. $(V_M, E_M) \subseteq (V_G, E_G)$ such that

$$\forall x, y \in V_M, \forall z \in V_G \setminus V_M:$$

(x, z) $\in E_G \iff (y, z) \in E_G \text{ and } (z, x) \in E_G \iff (z, y) \in E_G$

The edge set of M is the largest subset of E_G that contains all vertices in V_M .

MODULE DEFINITION

A module M of a graph G is a subgraph of G, i.e. $(V_M, E_M) \subseteq (V_G, E_G)$ such that

$$\forall x, y \in V_M, \forall z \in V_G \setminus V_M:$$

(x, z) $\in E_G \iff (y, z) \in E_G$ and (z, x) $\in E_G \iff (z, y) \in E_G$

The edge set of M is the largest subset of E_G that contains all vertices in V_M .

The trivial modules of G are the empty graph (\emptyset, \emptyset) , the graphs where V_M are singletons and G itself. A module M of G is maximal if the only module M' such that $V_M \subseteq V'_M$ is Gitself.

We say that a graph G is prime if $|V_G| \ge 2$ and all of the modules of G are trivial.

We say that a graph G is prime if $|V_G| \ge 2$ and all of the modules of G are trivial.

Here are all the directed prime graphs with $|V_G| = 2$:

COMPOSITION OF GRAPHS

Let G be a graph with n vertices $V_G = \{v_1, \ldots, v_n\}$ and let H_1, \ldots, H_n be n graphs such that $\forall i, j < n, i \neq j \implies V_{H_i} \cap V_{H_j} = \emptyset$. The **composition of H_1, \ldots, H_n via G** is the graph $G(|H_1, \ldots, H_n|)$ where each vertex v_i of G has been replaced by the graph H_i .

COMPOSITION OF GRAPHS

Let G be a graph with n vertices $V_G = \{v_1, \ldots, v_n\}$ and let H_1, \ldots, H_n be n graphs such that $\forall i, j < n, i \neq j \implies V_{H_i} \cap V_{H_j} = \emptyset$. The **composition of H_1, \ldots, H_n via G** is the graph $G(|H_1, \ldots, H_n|)$ where each vertex v_i of G has been replaced by the graph H_i .

Theorem [2]: Let G be a graph such that $|V_G| = n \ge 2$. Then, there are non-empty graphs H_1, \ldots, H_n and a prime graph P such that $G = P(|H_1, \ldots, H_n|)$.

CONSTRUCTING A MODULAR DECOMPOSITION TREE

CONSTRUCTING A MODULAR DECOMPOSITION TREE

CONSTRUCTING A MODULAR DECOMPOSITION TREE $a - b \rightarrow a - b \rightarrow c - d \rightarrow$

a

Which is the same as

$$G_P \rightarrow \Im(a-b), c-d) \rightarrow \Im(\otimes(a,b), \otimes(a,b))$$

CONNECTIVES

Recall the prime graphs of size 2:

 $??: \bullet \bullet \otimes: \bullet \to \bullet \land : \bullet \to \bullet$

We introduce a family of graphs we call the connectives. These generalize the prime graphs of size 2 to graphs of size n.

- \mathfrak{P}_n : The graph of *n* vertices with no edges
- \otimes_n : The graph of *n* vertices where all edges are connected
- \triangleleft_n : The graph of *n* vertices where the edges form a transitive chain going through all of the vertices

COMPUTING THE MODULAR DECOMPOSITION

```
condensing = true;
while condensing do
   do
      prevGraph = graph;
      graph = compressConnectives(graph);
   while prevGraph \neq qraph:
   graph = compressSmallestMaximalModules(graph);
   if length(V_{qraph}) == 1 then
      condensing = false:
   end
end
return graph;
```

Algorithm 1: Modular Decomposition Overview [3]

Finding the connective modules is quite easy, we just iterate over all possible pair of vertices of the graph v_i, v_j and check that the following holds:

 $\operatorname{suc}(v_i) \setminus \{v_j\} = \operatorname{suc}(v_j) \setminus \{v_i\} \text{ and } \operatorname{pred}(v_i) \setminus \{v_j\} = \operatorname{pred}(v_j) \setminus \{v_i\}$

If so, we just need to check if the edges (v_i, v_j) and/or (v_j, v_i) exists to determine the type of connective $(\mathfrak{P}, \otimes \text{ or } \triangleleft)$ the vertices are composed by.

FINDING THE SMALLEST MAXIMAL MODULES

In order to find the smallest maximal modules of a graph, we find all of the maximal modules with at least 2 vertices and take the smallest non-intersecting ones.

We thus iterate over all sets of vertices for which there exists an edge and follow these steps:

- We look at the vertices that are connected to one but not all of the vertices in our set
- 2 If there are none then we are done, otherwise add them to our set and repeat step 1

REFERENCES

- M. Acclavio, R. Horne, and L. Straßburger. Logic beyond formulas: a proof system on graphs. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 38–52. ACM, July 8, 2020.
- [2] A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures: A Framework for Decomposition and Transformation of Graphs. WORLD SCIENTIFIC, Aug. 1999.
- [3] L. James, R. Stanton, and D. Cowan. Graph decomposition for undirected graphs. *Utilitas Mathematica*, Jan. 1, 1972.