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MODULAR DECOMPOSITION FOR LOGIC
An interactive tool for the modular decomposition of graphs



INTRODUCTION

There exists a well know correspondence between formulae and cographs

An example:
P = (a⊗ b)` (c⊗ d)

GP :
a b

c d
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THE QUESTION

This correspondence has been extended into a proof system on arbitrary undirected graphs
called GS (graphic proof system) [1].

Current work is being done on more logic systems based on graphs.

This motivates the question, how does one study a graph’s structure?
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THE ANSWER

Such a graph theoretical tool exists, and is called the modular decomposition of a
graph.

Modules are to a graph what subformulas are to a formula.

Back to our example:
a b

c d
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PROBLEM DEFINITION

Given a graph, can we provide a nice way for logicians (or anyone else) to obtain it’s
modular decomposition?
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WHAT DO WE MEAN BY GRAPH?

Directed or undirected?

Both!
Do we allow self loops? No
Are we restricted to cographs? No
What kind of vertices? Labelled
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GRAPH DEFINITION

A graph G = (VG, EG) is an ordered pair where VG is a set of vertices and EG is a set of
pairs of elements of VG.

If G is undirected (resp. directed) then the pairs in EG are unordered (resp. ordered).

We say that G is L-labelled if there exists an injection lG : VG → L.
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MODULE DEFINITION

A module M of a graph G is a subgraph of G, i.e. (VM , EM ) ⊆ (VG, EG) such that

∀x, y ∈ VM ,∀z ∈ VG \ VM :

(x, z) ∈ EG ⇐⇒ (y, z) ∈ EG and (z, x) ∈ EG ⇐⇒ (z, y) ∈ EG

The edge set of M is the largest subset of EG that contains all vertices in VM .

The trivial modules of G are the empty graph (∅,∅), the graphs where VM are singletons
and G itself. A module M of G is maximal if the only module M ′ such that VM ⊆ V ′

M is G
itself.
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PRIME GRAPHS

We say that a graph G is prime if |VG| ≥ 2 and all of the modules of G are trivial.

Here are all the directed prime graphs with |VG| = 2:

` : • • ⊗ : • • ◁ : • •
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COMPOSITION OF GRAPHS

Let G be a graph with n vertices VG = {v1, . . . , vn} and let H1, . . . ,Hn be n graphs such
that ∀i, j < n, i ̸= j =⇒ VHi ∩ VHj = ∅.
The composition of H1, . . . ,Hn via G is the graph G(|H1, . . . ,Hn|) where each vertex
vi of G has been replaced by the graph Hi.

Theorem [2]: Let G be a graph such that |VG| = n ≥ 2. Then, there are non-empty
graphs H1, . . . ,Hn and a prime graph P such that G = P (|H1, . . . ,Hn|).
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CONSTRUCTING A MODULAR DECOMPOSITION TREE

a b

c d

→

`
a b c d →

`
⊗ ⊗

a b c d

Which is the same as

GP → `( a b , c d ) → `(⊗(a, b),⊗(a, b))
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CONNECTIVES

Recall the prime graphs of size 2:

` : • • ⊗ : • • ◁ : • •

We introduce a family of graphs we call the connectives. These generalize the prime
graphs of size 2 to graphs of size n.

`n: The graph of n vertices with no edges
⊗n: The graph of n vertices where all edges are connected
◁n: The graph of n vertices where the edges form a transitive chain going through all
of the vertices
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EXAMPLES

`4 :
• •

• •
⊗4 :

• •

• •
◁4 :

•

• •

•
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COMPUTING THE MODULAR DECOMPOSITION

condensing = true;
while condensing do

do
prevGraph = graph;
graph = compressConnectives(graph);

while prevGraph ̸= graph;

graph = compressSmallestMaximalModules(graph);
if length(Vgraph) == 1 then

condensing = false;
end

end
return graph;

Algorithm 1: Modular Decomposition Overview [3]
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FINDING THE CONNECTIVES

Finding the connective modules is quite easy, we just iterate over all possible pair of
vertices of the graph vi, vj and check that the following holds:

suc(vi) \ {vj} = suc(vj) \ {vi} and pred(vi) \ {vj} = pred(vj) \ {vi}

If so, we just need to check if the edges (vi, vj) and/or (vj , vi) exists to determine the type
of connective (`, ⊗ or ◁) the vertices are composed by.
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FINDING THE SMALLEST MAXIMAL MODULES

In order to find the smallest maximal modules of a graph, we find all of the maximal
modules with at least 2 vertices and take the smallest non-intersecting ones.

We thus iterate over all sets of vertices for which there exists an edge and follow these
steps:

1 We look at the vertices that are connected to one but not all of the vertices in our set
2 If there are none then we are done, otherwise add them to our set and repeat step 1
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