
Project Report
Parallel Fast Fourier Transform

Elouan Gros
Rémy Seassau

Nazila Sharifi Amina

November, 2022



1 Fast Fourier Implementation
We based our implementation of the FFT algorithm off of the book by Jeff Erickson [2].
More specifically, we use the Cooley-Tukey radix-2 fast Fourier transform algorithm
based on the divide-and-conquer paradigm.

Our methodology was to first implement the algorithm and its inverse before focusing
on parallelism. We give in the following subsections a reminder of the algorithm and
present some implementation details in C++.

1.1 Forward
We give the pseudocode of the implemented algorithm in the appendix (Algorithm 1).
Notice that the input is an array of reals while the output array has values in C. We
elect for our implementation to use a vector of double for the input and a vector of
std::complex<double> for the output. Thinking ahead to the parallelization, we store
the result in a vector taken as an input by reference. Finally, note that we take our
input to be of size 2k by padding the input with 0 if necessary.

1.2 Inverse
We compute the inverse again according to [2]. The pseudocode is included in the ap-
pendix (Algorithm 2) with the differences between the inverse and the forward direction
highlighted in red. Note here that both the input and output in the implementation
use the std::complex<double> type.

1.3 Parallelizing
We first notice that the recursive calls are done in such a way that we need the result
of both the recursive calls before we can finish a function call. Paired with this is the
idea that we want our threads to divide the work as much as possible. In order to
achieve this, we start our recursive calls with a number of threads that we want to use.
While we have more than two threads available, we use a new thread to do one of our
recursive calls.

We illustrate in Figure 1 the successive recursive calls of each thread where n is the
size of the input and m is the number of threads at our disposition. Each node repre-
sents the number of threads available to a thread at that point. We also provide the
pseudocode for this parallelization in (Algorithm 3) where the parallelization additions
are highlighted in blue.

1



4

2

1 1

2

1 1

Figure 1: Representation of thread creations with n = m = 4

2 Benchmarking
2.1 Prediction Accuracy
We decide to use the FFT to ”compress” the weather data of Taourirt Izakarn, Morocco.
Indeed, taking the weather data, we start by compute the FFT on it. We are then
left with an array of complex coefficients. We can then eliminate a percentage of the
coefficients by sorting them by importance (since we are in C, we just take the norm
to get the importance). Then computing the inverse FFT on our filtered array gives
us an approximation of the data that can be stored with less coefficients. We illustrate
this process with Figure 3.

Using the same data, we can compute for different percentage thresholds the absolute
and relative error of our approximation. We give a plot of this data in Figure 2.

Figure 2: Absolute and relative error percentage of our approximation

2



Figure 3: Approximation of Temperature data at Taourtit Izakarn

(a) Full data

(b) Data recovered from eliminating 10% of the coefficients

(c) Data recovered from eliminating 90% of the coefficients

3



2.2 Computation Speed
In order to test the speed of computation we consider the problem of polynomial
multiplication. Indeed, this problem involves a straightforward application of the FFT
and its inverse with a very minimal step in between the two.

An important note is the decision we made earlier of padding our vectors until they
reach size 2k for some k ∈ N means that we are better off testing on polynomials of size
2k since the polynomials of size 2k < n < 2k+1 will take about the same computation
time as those of size 2k+1. Computing the time for various sizes of the polynomials
and for numbers of threads between 1 and 8, we see an emerging pattern that can be
observed in Figure 4.

Figure 4: Time of computation over size of the input (log scale)

Indeed, when the number of threads m is not a power of 2, we find that it shares similar
times as when the number of threads is the largest k such that 2k ≤ m. Thinking back
to Figure 1, this makes sense. Indeed, consider Figure 5. Notice that in the presented
case the entire right half of the tree is left to one thread. Because we cannot compute
the top-level without the result of both recurrent calls, the time it takes is equal to the
maximum of the children. It should now make sense that we only see improvements in
runtime when the number of threads reaches a power of 2.

4



3

2

1 1

1

1 1

Figure 5: Representation of thread creations with n = 4 and m = 3

Fortunately this can be remediated by choosing a smarter parallelization, such as the
one given in Section 4 of [1]. Indeed, this requires shifting away from a recursive FFT
algorithm into an iterative one where it is easier to move the order of operations around
to ensure that each thread can compute a more or less equal amount of operations.
We would expect to see an increase in performance for every additional thread in such
a way that the performance of the well parallelized FFT should be about equal to our
naively parallelized FFT when the number of threads is a power of 2.

Nota Bene:

The code for this project can be found on the github page:

https://github.com/El-BG-1970/fast_fourier

Please note that the contributions are not necessarily reflective of how much work was
done by each person as we often worked in a group on the same computer.

5

https://github.com/El-BG-1970/fast_fourier


References
[1] Amir Averbuch et al. “A parallel FFT on an MIMD machine”. In: Parallel Com-

puting 15.1 (1990), pp. 61–74. issn: 0167-8191. doi: https://doi.org/10.1016/
0167-8191(90)90031-4. url: https://www.sciencedirect.com/science/
article/pii/0167819190900314.

[2] Jeff Erickson. Fast Fourier Transforms. url: https://jeffe.cs.illinois.edu/
teaching/algorithms/notes/A-fft.pdf.

6

https://doi.org/https://doi.org/10.1016/0167-8191(90)90031-4
https://doi.org/https://doi.org/10.1016/0167-8191(90)90031-4
https://www.sciencedirect.com/science/article/pii/0167819190900314
https://www.sciencedirect.com/science/article/pii/0167819190900314
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf


A Algorithms

Algorithm 1: radix2fft
Input: An array P of size n

if n = 1 then
return P

U = array(n/2);
V = array(n/2);
for j ∈ [0, n− 1] do

U[j] = P[2j]; // U = P[::2]
V[j] = P[2j+1]; // V = P[1::2]

U∗ = radix2fft(U); // Recursive calls
V ∗ = radix2fft(V);
P ∗ = array(n);
ω1 = e2πi/n; // nth roots of unity
ω = 1;
for j ∈ [0, n/2− 1] do

P ∗[j] = U∗[j] + ωV ∗[j];
P ∗[j+n/2] = U∗[j]− ωV ∗[j];
ω = ω · ω1;

return P ∗;

7



Algorithm 2: invradix2fft
Input: An array P of size n

if n = 1 then
return P

U = array(n/2);
V = array(n/2);
for j ∈ [0, n− 1] do

U[j] = P[2j]; // U = P[::2]
V[j] = P[2j+1]; // V = P[1::2]

U∗ = invradix2fft(U); // Recursive calls
V ∗ = invradix2fft(V);
P ∗ = array(n);
ω1 = e−2πi/n; // inverse nth roots of unity
ω = 1;
for j ∈ [0, n/2− 1] do

P ∗[j] = (U∗[j] + ωV ∗[j])/2;
P ∗[j+n/2] = (U∗[j]− ωV ∗[j])/2;
ω = ω · ω1;

return P ∗

8



Algorithm 3: parallelfft
Input: An array P of size n, a number of threads m

if n = 1 then
return P

U = array(n/2);
V = array(n/2);
for j ∈ [0, n− 1] do

U[j] = P[2j]; // U = P[::2]
V[j] = P[2j+1]; // V = P[1::2]

if m ≥ 2 then
t = spawn thread;
U∗ = t(parallelfft(U, m/2)); // Run one of the calls in a thread
V ∗ = parallelfft(V, m/2);
t.join();

else
U∗ = parallelfft(U, 1); // If we ran out of threads
V ∗ = parallelfft(V, 1);

P ∗ = array(n);
ω1 = e2πi/n;
ω = 1;
for j ∈ [0, n/2− 1] do

P ∗[j] = U∗[j] + ωV ∗[j];
P ∗[j+n/2] = U∗[j]− ωV ∗[j];
ω = ω · ω1;

return P ∗;

9


	Fast Fourier Implementation
	Forward
	Inverse
	Parallelizing

	Benchmarking
	Prediction Accuracy
	Computation Speed

	References
	Algorithms

