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1 Introduction
An important topic of research in formal verification is the safety verification of hybrid systems.
Hybrid systems include both discrete and continuous dynamics, and are used to model cyber-
physical systems, for example. The importance of this topic is derived from its applications to
safety critical systems such as embedded flight control systems [15] or life support devices [4].
In the case that interests us, the verification is done by showing that starting from some initial
conditions, a system cannot evolve to some unsafe region in the state space. For example, for
an autopilot system one could image the initial condition to be that we start at some altitude
A(0) > 500 and we want to show that from A(0), with our flight control system, we will never
reach the state A(t) ≤ 0 where we have crashed.

One method for safety verification is to use barrier certificates, which separate the initial
states from the unsafe region. In this project, we study the automatic computation of different
types of barrier certificates using computation methods. Note that barrier certificates can be
extended to hybrid systems using multiple barriers indexed by the discrete state and linked
using conditions on the discrete transitions. We thus focus on the safety verification of a single
dynamical system.

1.1 Problem definition
In this section, we give fundamental definitions which shall be subsequently used in the study
of the different kinds of Barrier Certificates which we shall consider.

1.1.1 Some preliminaries

Definition 1 (Semi-algebraic Sets). A set S ⊆ Rn is semi-algebraic iff it is characterized by a
finite boolean combination of polynomial equations and inequalities:

l∨
i=1

(
mi∧
j=1

pij < 0 ∧
Mi∧

j=mi+1

pij = 0

)
(1)

where pij ∈ R [x1, . . . , xn] (i.e. pij are multivariate polynomials in the indeterminates x1, . . . , xn,
with real coefficients).

By quantifier elimination (Section 3.1), every first-order formula of real arithmetic charac-
terizes a semi-algebraic set and can be expressed in the form (1) [8]. Let n ∈ N≥1.
Definition 2 (n-dimensional system of ODEs). An (autonomous) n-dimensional system of
ODEs is a system of the form:

x′
1 = f1 (x1, x2, . . . , xn)

...
x′
n = fn (x1, x2, . . . , xn)
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where fi : Rn → R is a real-valued (typically continuous) function for each i ∈ {1, . . . , n},
and x′

i denotes the time derivative of xi, i.e. dxi

dt
.

In applications, constraints are often used to specify the states where the system is allowed
to evolve, i.e. the system may only be allowed to evolve inside some given set X ⊆ Rn, which is
known as the evolution constraint. We can write down systems of constrained ODEs concisely
by using vector notation, i.e. by writing x′ = f(x),x ∈ X . Here we have x′ = (x′

1, . . . , x
′
n) and

f : Rn → Rn is a vector field generated by the system, i.e. f(x) = (f1(x), . . . , fn(x)) for all
x ∈ Rn. If no evolution constraint is given, X is assumed to be the Euclidean space Rn.

Definition 3 (Lie derivative). We define the Lie derivative of a differentiable scalar function
φ : Rn → R with respect to a vector field f as

Lfφ =
∂φ

∂x
f(x) =

n∑
i=1

∂φ

∂xi

fi(x)

The Lie derivative evaluates the change of a scalar function along the flow of a vector field.
In our case, the scalar function often corresponds to the barrier certificate and the vector field is
the function f representing our dynamical system. Additionally, we have the following equality
∂φ
∂x
f(x) = dφ(x(t))

dt
which we will use later.

A solution to the initial value problem (IVP) for the system of ODEs x′ = f(x) with initial
value x0 ∈ Rn is a (differentiable) function x : (a, b) → Rn defined for all t in some open interval
including zero, i.e. t ∈ (a, b), where a, b ∈ R∪{∞,−∞}, a < 0 < b, and such that x(0) = x0 and
d
dt
x(t) = f(x(t)) for all t ∈ (a, b). At time t, for solutions to IVPs with initial value x0, we shall

write x (x0, t), or simply x(t) if the initial condition is understood from context. It is intuitive
that if the solution x (x0, t) is available in closed-form, then one can study properties such as
safety by analysing the closed-form expression. However, in nonlinear ODEs it is in practice
highly uncommon for solutions to exist explicitly in closed-form [2, 5], and even if closed-form
solutions can be found, transcendental functions in these expressions lead to an undecidable
problem [13].

Remark 1 . As in Sogokon et al [14], we employ a slight abuse of notation for sets and
formulas characterizing those sets, i.e. X denotes both a set X ⊆ Rn and a formula X of real
arithmetic with free variables x1, . . . , xn which characterizes this set. In the case of sub-level
sets, i.e. sets characterized by predicates of the form B ≤ 0 where B is a real valued function
in the (dependent) variables x1, . . . , xn, we will write B(x) ≤ 0 to mean B ≤ 0 is true in state
x ∈ Rn, and will explicitly use the independent time variable t to write B(x(t)) ≤ 0 when we
are interested in evaluating the predicate along a solution x(t) of a differential equation.

1.1.2 The Safety Verification Problem

We now give a formal definition of the Safety Verification Problem, which is the focus of this
research project.
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Definition 4 (Safety in ODEs). Given a system of ODEs x′ = f(x) with evolution domain
constraint X ⊆ Rn, and the sets X0 ⊆ Rn, Xu ⊆ Rn of initial and unsafe states, respectively, the
system is said to be safe if and only if:

∀x0 ∈ X0, ∀t ≥ 0 : ((∀τ ∈ [0, t].x (x0, τ) ∈ X ) ⇒ x (x0, t) /∈ Xu).

Definition 5 (Continuous invariant). . Let X ⊆ Rn be the evolution domain constraint on a
given system x′ = f(x). We say that the set I ⊆ Rn is a continuous invariant iff the following
statement holds:

∀x0 ∈ I, ∀t ≥ 0 : ((∀τ ∈ [0, t] : x (x0, τ) ∈ X ) =⇒ x (x0, t) ∈ I) .

For any given set of initial states X0 ⊆ Rn, a continuous invariant I such that X0 ⊆ I
provides a sound over-approximation of the states reachable by the system from X0 by following
the solutions to the ODEs within the evolution domain constraint X . Indeed, the exact set of
states reachable by a continuous system from X0 provides the smallest such invariant. 4 While
Def. 1 above features the solution x (x0, t), which may not be available explicitly, a crucial
advantage afforded by continuous invariants is the possibility of checking whether a given set is
a continuous invariant without computing the solution, i.e. by working directly with the ODEs.

2 Barrier certificates
First introduced by S. Prajna and A. Jadbabaie [10], barrier certificates are a function satisfying
a set of inequalities on both itself and its derivative. The term barrier originates from the fact
that the zero level set of the barrier certificate := {x | B(x) = 0 } is what separates the unsafe
space from the trajectories starting from our initial space. Hence, if such a barrier certificate
exists, we know that our system is safe. The main advantage of such a technique is that we
can find a barrier without having to compute the reachable sets, since showing the existence of
the barrier is sufficient. For systems modeled by robustly safe ODEs we know that there exists
a corresponding barrier certificate [12]. What remains difficult is methods for computing these
barrier certificates.

We can extend the use of barrier certificates to handle hybrid systems by constructing dif-
ferent barriers for different system locations and linking them by conditions on the discrete
transitions between these system locations. It is known that if the vector field of the system is
polynomial, then we can try to construct a polynomial barrier certificate using some numerical
solvers. This also holds for hybrid systems if we add the condition that the whole system is
composed of semi-algebraic sets. For simplification purposes, we will focus on barrier certificates
in a single continuous system.

The following subsections focus on the definition of different types of barrier certificates.
Section 2.1 goes over the initial barrier certificate introduced by Prajna and Jadbabaie. We
call this the strict barrier certificate. In Section 2.3, we introduce another type of barrier
certificate we will call the exponential barrier certificate [7]. From now, consider x′ = f(x) to
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be a continuous dynamical system where x ∈ X is a state of the system, X0 is the initial space
and Xu is our unsafe space.

2.1 Strict
In this subsection we formally define the strict barrier certificate and prove that its existence
certifies the safety of the dynamical system. We report the following theorem and proof from
Prajna and Jadbabaie [10], giving the conditions on the barrier certificate in order to ensure
safety:

Theorem 1. Suppose there exists a function B : X → R that is differentiable with respect to its
argument and satisfies the following conditions for all x ∈ X :

x(t) ∈ Xu =⇒ B(x) > 0 (2)
x(t) ∈ X0 =⇒ B(x) ≤ 0 (3)

B(x(t)) = 0 =⇒ ∂B

∂x
f(x) ≤ 0 (4)

then the safety of the system is guaranteed, i.e., there exists no trajectory of the system contained
in X that starts from an initial state X0 and reaches a state in Xu.

Proof. Assume that a barrier B fulfilling the previous conditions exists. Let x(t) ∈ X such that
x(0) ∈ X0. Then we have by condition (3) that B(x(0)) ≤ 0. Then, condition (4) tells us that
that B(x(t)) may never become positive. By (2), any such trajectory is thus guaranteed to never
enter an unsafe state.

In the above proof, it may be easier to understand that the reason that (4) implies that the
barrier stays negative is analogous to the fact that for f ∈ C1(R), f ′(x) < 0 implies that the
function is decreasing. Thus if the function is decreasing when f(x) = 0, we know that the
function may never become positive once it is negative. Note also that we have simplified the
proof by not considering disturbances to the dynamical system.

2.1.1 Example 1

To give further intuition, we report the following example of a two-dimensional second-order
system [6, p. 180] used in Prajna and Jadbabaie. Let X = R2 and consider the vector field given
by

x′
1 = x2

x′
2 = −x1 +

1

3
x3
1 − x2

Let X0 = {x ∈ R2 : (x1 − 1.5)2 + x2
2 ≤ 0.25 } and Xu = {x ∈ R2 : (x1 + 1)2 + (x2 + 1)2 ≤ 0.16 }.

It is possible to find a barrier quartic certificate that guarantees that a trajectory starting at X0

never enters Xu.
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Figure 1: Phase por-
trait of the example
[10, p. 12]: the red ar-
rows indicate the flow
of the vector field, the
black set is Xu, the
green set is X0, the
dashed lines are the
zero level set of the
barrier and the blue
lines are some tra-
jectories starting from
X0.

The above figure offers a graphical intuition of why the example of the barrier guarantees
safety. A trajectory starting in X0 will never enter Xu as it would have to cross the zero level
set to do so, which is impossible by (4).

2.2 Convex
The convex barrier certificate is stronger than the strict barrier certificate. Indeed, one has that
the set of strict barrier certificates is not convex. Thus, once cannot find a strict barrier certificate
using convex optimization. This can be resolved by introducing a new barrier certificate type
we will call the convex barrier certificate.
Definition 6 (Convex Barrier Certificate). We call a function a ”convex barrier certificate” if
it satisfies conditions (2)-(3) and a new condition that is stronger than (4), given by:

∀x ∈ X ,
∂B

∂x
f(x) ≤ 0 (5)

By the same proof as for the strict barrier certificate, the existence of a convex barrier
certificate guarantees the system’s safety. The added benefit of this stronger condition is that
the set of convex barrier certificates is convex, meaning that for any θ ∈ [0, 1] and any two
barrier B1, B2 satisfying conditions (2),(3) and (5), we have that B(x) = θB1(x) + (1− θ)B2(x)
is also a convex barrier certificate. In particular, this enables the computation of convex barrier
certificates using convex optimization.

2.3 Exponential
The exponential barrier certificate introduced by Kong et al. [7] is a generalization of the convex
barrier certificate. It introduces an additional constraint on the lie derivative of the barrier and
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is defined through the following theorem. We report here the statement of the theorem defining
the convex barrier certificate using the same notation for the dynamical system as before. The
proof is given in [7].

Theorem 2. For any given λ ∈ R, if there exists B : X → R satisfying the following conditions

x(t) ∈ Xu =⇒ B(x) > 0 (6)
x(t) ∈ X0 =⇒ B(x) ≤ 0 (7)

∂B

∂x
f(x)− λB(x) ≤ 0 (8)

then the safety of the system is guaranteed.

Remark that the exponential condition is convex, as it is a generalisation of the convex barrier
certificate. This means that we can reduce the problem of constructing a barrier certificate into a
convex optimization problem which can be solved by semidefinite programming (more in Section
3).

The obvious question to ask now is which barrier certificate is ”better”. Obviously in terms
of use, all barrier certificates serve the exact same purpose and do so equally well. We thus turn
to the question of computability: is it easier to find one of the barrier certificates types? In
other words, is there a type that we can construct more reliably and is there a type that we can
construct faster.

3 Computation Methods
3.1 Quantifier Elimination
Given a quantified first-order logic formula in real arithmetic, Quantifier Elimination (QE) is an
algorithmic procedure that converts such formula into a quantifier-free yet logically equivalent
one. Because the necessary conditions that polynomial Barrier Certificates need to satisfy are in
fact quantified first-order logic formulas in real arithmetic in terms of the ”template coefficients”
to be determined (see Section 2), it is natural to think of ways in which these formulas can be
reduced to their quantifier-free versions if the latter exist, in which case the problem is more
approachable from a computational point of view.

In fact, a 1949 seminal and constructive result by Alfred Tarski and Abraham Seidenberg
showed that Quantification Elimination is possible over the reals (an important corollary is the
decidability of the first-order theory of real arithmetic). This is a very powerful result in the
context of this research project, since it exactly means that once Quantification Elimination
is performed on the Barrier Certificate conditions, we can obtain the exact full set of possible
Barrier Certificates, each of which proves the safety of the system at hand. Hence, this method
is the least conservative in the sense that it reveals all possible solutions.
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Theorem 3 (Quantifier Elimination over real arithmetic OR Tarski-Seidenberg (1949)). Given
a semi-algebraic set S ⊂ Rn+1, we define a projection map π : S −→ Rn that sends every
(x1, x2, ..., xn+1) to (x1, ..., xn) in Rn.
Then, the image of S by π, π(S) ⊂ Rn, is semi-algebraic.

An iterated application of the Tarski-Seidenberg theorem above then yields a quantifier-free
Boolean formula. While Tarski had proposed an exact algorithm to perform QE, it could not
be implemented on a computer. In [3] however, Collins and Hong provided an innovative (and
optimal) doubly-exponential time QE algorithm. We refer the reader to this paper for more
details.

3.2 The Sum of Squares (SOS) Method
Given the very high computational complexity of QE, it is interesting to consider more computa-
tionally attractive methods (which may come with trade-offs). For Barrier Certificate conditions
exhibiting convexity, Sum-of-squares programming [11] provides a tractable way of solving for
the Certificate’s polynomial template coefficients as revealed by the following theorem:

Theorem 4 (SOS condition for exponential-type Barrier Certificates [11]).
As previously, we suppose that X0 =

∨s
i=1

(∧mi

j=1 pij < 0 ∧
∧Mi

j=mi+1 pij = 0
)

and

Xµ =
∨t

k=1

(∧mk

l=1 qkl < 0 ∧
∧Mk

l=mk+1 qkl = 0
)

are semi-algebraic.
Let pa,d be the Barrier Certificate polynomial template where a is the vector of coefficients and
d is the degree of the template. Then:

Inequalities (6), (7) and (8) are respectively implied by the following SOS inequalities, where
ε > 0 is a small positive constant and σpi,j , σqk,l are template SOS polynomials:

−pa,d −
∑
i,j

σpi,jpi,j ≥ 0

pa,d −
∑
k,l

σqk,lqk,l − ε ≥ 0

λpa,d − (pa,d)
′ ≥ 0

The proof follows immediately by construction.
This problem can then be solved using a solver like Mathematica[16] or SOSTOOLS [11].

4 Implementation
Our objective being to compare the use of sum of squares and quantifier elimination to generate
barrier certificates, we would need to build a tool to test different computation techniques.
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Working with Prof. Mover, we set to extend a tool designed for semi-algebraic abstraction for the
verification of polynomial dynamical systems [9]. The use of quantifier elimination to generate
strict barrier certificates was already implemented. We thus added an encoding of convex barrier
certificate computation to sum of squares optimization and an encoding for exponential barrier
certificate computation using quantifier elimination.

All of the following implementations are based off of a polynomial template on which we
enforce constraints. These constraints are implemented with either satisfiability modulo theories
solvers for QE, such as Mathematica [16], or semidefinite programming solvers for SOS, such as
CVXOPT [1]. The key problem here is what we choose the degree of our polynomial template
to be. Indeed, one method is template enumeration, where we incrementally increase the degree
and use our solves to try and find a solution [14], but this is computationally heavy.

The implementation procedure for Quantifier Elimination is quite straightforward as it anal-
ogous to writing down the conditions for either barrier certificate type in first order logic. The
implementation for the sum of squares revolves around making sure that the inequalities de-
scribed in (2)-(4) (or (6)-(8) for an exponential barrier) are true. This is done by forcing either
the non-zero or the negation of the non-zero side of the inequality to be a sum of squares, i.e.
positive.

5 Conclusion
During our project, we have encountered multiple types of barrier certificates and seen their indi-
vidual characteristics. Of these, convexity of the set of barrier certificates has been particularly
important as it enables convex optimization solvers to compute barriers. In general, we have
seen that for any safe system there exists a barrier certificate proving this safety. It is however
not guaranteed that we can always find such a barrier automatically with existing computation
techniques. Although we have implemented two new types of computations, it remains to test
these on various examples to observe empirically if some techniques appear to be ”better” than
others.

Through our task of implementation, we have found particular topics regarding the automatic
computation of barrier certificates that deserve further investigation. One important question
for the efficiency of the computation is whether we can find a good heuristic for the template
degree when we do template enumeration. If some can be found, they will greatly improve the
scalability of the method as more complex barriers will be found faster.

Another direction could be to look at a weaker variation of the exponential barrier certificate
akin to the strict barrier where we no longer require condition (8) on the whole space but
rather on some smaller set. Doing this, we would lose the convexity of the set which would
render computation through sum of squares impossible. However, it may increase the speed of
quantifier elimination by enforcing a weaker condition which effectively filters the domain on
which we are searching for a solution.
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