
Modular Decomposition for Logic

An interactive tool for the modular decomposition
of graphs

Remy Seassau

Under the supervision of
Lutz Strassburger

A thesis presented for the degree of
Bachelor of Science

Laboratoire d’Informatique de l’X
École Polytechnique, Institut Polytechnique de Paris

Palaiseau, France

Modular Decomposition for Logic

An interactive tool for the modular decomposition of graphs

Remy Seassau

Abstract
There exists a well-known correspondence between cographs and logical formulae.

This relationship has been explored, extended, and inverted in such a way that
we are now interested in logics built on graphs. Modular decomposition is a
graph-theoretical method for the decomposition of the structure of a graph. It
has proven to be an essential tool for the construction and use of these logics.
We seek to provide a tool for the interactive creation, modification, and modular
decomposition of graphs. The tool should also allow for the creation, modification
and recomposition into graphs of modular decompositions.

We present in this report a tool for the interactive creation, modification and
modular decomposition of graphs. We implement in Ocaml a naive, quartic-time
complexity algorithm for the decomposition as it is sufficiently fast for human-
readable purposes. Using the browser as our GUI 1 , we use an Ocaml to JavaScript
compiler to run the algorithm directly in the browser. We support both directed
and undirected graphs as different logics rely on different notions of graphs. We
have thus built a practical tool for the interactive modular decomposition of graphs
and a prototype for enabling logicians to work digitally on logics with graphs as
formulae.

Keywords — Logic, Modular Decomposition, Proof Theory, Graph Theory

1The tool can be accessed as a webpage http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/
modular_decomposition/ or compiled from the source code and used locally (see Section 6.2)

1

http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/modular_decomposition/
http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/modular_decomposition/

Contents
1 Motivation and Related work 3

1.1 Logic and Graphs . 3
1.2 Modular Decomposition Algorithms 4

2 Modular Decomposition of Graphs 5
2.1 Graphs . 5
2.2 Modules . 6
2.3 From Formulae to Graphs . 8

3 The Algorithm 11
3.1 Connective Compression . 11
3.2 Maximal Module Compression . 13
3.3 Tree Recovery . 14

4 Our Implementation 16
4.1 Graphs . 16
4.2 Modular Decomposition Trees . 17
4.3 State and Subsets . 18
4.4 From Condensed Graph to MDT 18
4.5 From a MDT to its Graph . 19

5 Interactivity Features 21
5.1 Interacting with the Graph . 21

5.1.1 Mouse inputs . 22
5.1.2 Keyboard inputs . 22
5.1.3 Buttons . 22

5.2 Interacting with the Decomposition Tree 23
5.2.1 Mouse Inputs . 23
5.2.2 Keyboard inputs . 24
5.2.3 Buttons . 24

5.3 Additional Features . 24

6 Running the code 26
6.1 Calling OCaml Functions from the Browser 26
6.2 Compiling the Code . 27

7 Conclusion 28
7.1 Future work . 28

References 30

A Examples 32

2

1 | Motivation and Related work

This paper presents a tool written for the user to interact with graphs and their
structure through the graphs’ modular decomposition. We explain in the intro-
duction the motivation behind such a tool and our approach to implementing an
algorithm for modular decomposition. We then formally define the notions of
graphs and logic in order to motivate the project further. Afterwards, we give the
algorithm that we use for modular decomposition before detailing our implemen-
tation. Finally, we introduce the tool’s full features, followed by some technical
indications on how to run the project and conclude.

1.1 Logic and Graphs

There exists a well known correspondence between logical formulae and a certain
class of graphs called cographs [1]. Indeed, consider the two following logical
formulae P = (a` c)⊗ (b` d) and Q = (a⊗ b)` (c⊗ d). These formulae can be
represented by the following graphs:

GP :
a b

c d
GQ :

a b

c d

This correspondence has motivated the definition of a proof system on cographs [19].
Work has been done to generalize proof systems on cographs to directed cographs [21,
20]. This idea was then generalized further when the cograph condition was dropped
and the graphic proof system (GS) was created [1]. Work is currently being done
by L. Strassburger and others to generalize GS even further by extending the
proof system from undirected graphs to directed graphs. This idea of directed
logical connective is implemented in the logic BV (basic system V [13, 23]), which
introduces a non-commutative logical connective called "before" (◁).

In order to reason about such proofs systems on graphs, we would like to
study the structure of the "formulae" which in our case correspond to nested (or
composed) graphs. Unlike in an ordinary logical formula, our logical connectives are
now graphs and n-ary. We thus use the modular decomposition trees of our graphs

3

1.2 Modular Decomposition Algorithms 4

to study their structure, identifying children of a parent in the tree to subformulas
of a formula.

1.2 Modular Decomposition Algorithms

There exists several algorithms for modular decomposition as it is a well studied
concept in graph theory [14]. Although linear time complexity algorithms exist
for the modular decomposition of both directed [16] and undirected [22] graphs,
we decide to use a "naive" algorithm which is quartic in the number of nodes in
the graph. The reason for this is double. Firstly, existing linear time algorithms,
although simpler than older linear algorithms, remain much more complicated to
reason about than the naive algorithm. Using the quartic algorithm makes it easy
to reason about and maintain. Secondly, the intended purpose of this tool is to
allow the user to visually play around with graphs. The graphs in question should
thus be of reasonable size (although there is no size restriction on them), and in
practice, we do not experience any significant computation time. We base our
algorithm on the first paper on modular decomposition, published in the 1970s [15].

We split the project into two distinct parts that need only interact at discrete
moments in time: the modular decomposition algorithm and the interactions with
graphs. Given the nature of the structures we intend to work on, we would like
to be able to efficiently reason about our code and thus choose the strongly-typed
functional programming language Ocaml. Advantages of this language choice are
the potential merging with other projects (for example, interactive theorem proving
projects such as [6]) and a decrease in technical debt at the PARTOUT team at
INRIA.

For the interaction with graphs, we choose to use the browser as our GUI and
base ourselves on the Cytoscape.js JavaScript library [10]. Running our interface
in the browser means that we can openly host the project for anyone to use while
also allowing anyone who wishes to run a local version to download the source code
and build the project themselves. We allow our modular decomposition algorithm
to be run from the browser using the Js_of_Ocaml compiler [24], which allows us
to compile Ocaml bytecode to Javascript, which is runnable in the browser.

https://www.irif.fr/~habib/Documents/cours_4-2015.pdf#Outline0.3.1.37

2 | Modular Decomposition of Graphs

2.1 Graphs

An undirected graph G = (VG, EG) is an ordered pair where VG is a set of vertices
and EG is a set of unordered pairs of elements of VG. EG defines an irreflexive and
symmetric binary relation that corresponds to the edges in the graph. A directed
graph G = (VG, EG) is similarly defined with the exception that EG is a set of
ordered pairs that defines an irreflexive binary relation (not symmetric). In the
following, we say graph to mean both an undirected or directed graph and we
specify which we mean when necessary. We restrict ourselves to graphs with finite
vertex sets.

Definition 2.1.1. The edges of a graph define four possible relations on an ordered
pair of vertices (v1, v2):

• there is an edge from v1 to v2 but
not from v2 to v1 (v1 v2)

• there is an edge from v1 to v2 and
from v2 to v1 (v1 v2)

• there is an edge from v2 to v1 but
not from v1 to v2 (v1 v2)

• there is no edge between v1 and v2
(v1 v2)

We thus denote Redges the set { , , , } of edge relations on an ordered
pair of vertices.

We choose to identify the edge pairs (v1, v2) of an undirected graph with
the v1 v2 relation since the pair is unordered. This provides an injection from
undirected to directed graphs, where every edge pair (v1, v2) in the undirected
graph is mapped to a pair of edges (v1, v2), (v2, v1) in the directed graph. As such,
the edge pairs of an undirected graph define the and relations, whereas a
directed graph can define any of the edge relations.

We say that for some vertex v ∈ V , the set { vi | vi ∈ V, v vi or v vi } is the
set of successors of v, denoted suc(v). Similarly, { vi | vi ∈ V, vi v or v vi } is
the set of predecessors of v, denoted pred(v). If the graph is undirected, we have
for all v ∈ V that suc(v) = pred(v).

5

2.2 Modules 6

Definition 2.1.2. Given a graph G, the complement of G, denoted Ḡ is defined as

(VG, {(v1, v2) | v1, v2 ∈ VG, v1 ̸= v2, (v1, v2) /∈ EG})

Definition 2.1.3. Given a set L of labels, we say that a graph G is L-labelled if
there exists an injective function lG : VG → L. We write lG(v) to denote the label
of a vertex v ∈ VG. If L contains only atoms, we say that G is an atomic graph.

A graph G′ is a subgraph of a graph G iff VG′ ⊆ VG and EG′ ⊆ EG. We write
G′ ⊆ G to denote that G′ is a subgraph of G.

Definition 2.1.4. We say that G′ is an induced subgraph of G if

VG′ ⊆ VG and ∀v1, v2 ∈ VG′ , (v1, v2) ∈ EG′ ⇐⇒ (v1, v2) ∈ EG

Specifically, we say that G′ is the subgraph of G induced by VG′ .

2.2 Modules

A module M corresponds to a subgraph where all of the vertices inside M relate
to the other vertices outside of M in the same way. We are in particular interested
in maximal modules, which are the modules that are not contained in any module
other than the whole graph. Indeed, a module is to a graph what a subformula is
to a formula.

Definition 2.2.1. A module of a graph G is an induced subgraph M = (VM , EM)
of G such that

∀x, y ∈ VM ,∀z ∈ VG \ VM ,∀R ∈ Redges, xRz ⇐⇒ yRz

where R is any of the four possible edge relations previously defined.

A module M in G is maximal if for all modules M ′ of G with M ′ ̸= G we have
M ⊆ M ′ =⇒ M = M ′. A module is trivial if V = ∅, V is a singleton {v} or
VM = VG.

Definition 2.2.2. A graph G is prime if and only if |VG| ≥ 2 and all modules of
G are trivial.

We note and name here the graphs of size 2 (which by definition, are all prime),

` : • • ⊗ : • • ◁ : • • (2.2.1)

We specify two additional prime graph names: Pn for n ≥ 4 and Sn for n ≥ 3,
where Pn is the line graph of n vertices with the relation and Sn is the line
graph of n vertices with the relation.

2.2 Modules 7

Example 2.2.1.

P4 : • • • • S4 : • • • •

We will see later that prime graphs can be viewed as generalized non-decomposable
n-ary connectives [12, 3], where n is the number of vertices of the prime graph.

Definition 2.2.3. Let G be a graph with n vertices VG = {v1, . . . , vn} and let
H1, . . . , Hn be n graphs such that ∀i, j < n, i ̸= j =⇒ VHi

∩ VHj
= ∅. The

composition of H1, . . . ,Hn via G is the graph G(|H1, . . . , Hn|) where each
vertex vi of G has been replaced by the graph Hi. We thus have

VG(|H1,...,Hn|) =
n⋃

i=1

VHi

EG(|H1,...,Hn|) =

(
n⋃

i=1

EHi

)
∪ { (hi, hj) | hi ∈ VHi

, hj ∈ VHj
, (vi, vj) ∈ EG }

The previous definition allows us to view graphs as operators on graphs. We
thus define for all n ≥ 2 the `n, ⊗n and ◁n operators to correspond to the following
prime graphs:

• `n: The graph of n vertices with no edges

• ⊗n: The graph of n vertices where all edges are connected

• ◁n: The graph of n vertices where the edges form a transitive chain going
through all of the vertices

Example 2.2.2.

`4 :
• •

• •
⊗4 :

• •

• •
◁4 :

•

• •

•

From this point forward, we omit the n index from the above graphs/operators
when it is clear from context.

Theorem 1 ([15, 8]). Let G be a graph such that |VG| = n ≥ 2. Then, there are
non-empty graphs H1, . . . , Hn and a prime graph P such that G = P (|H1, . . . , Hn|).

Corollary 1.1. Each graph admits a modular decomposition by prime graphs,
creating a tree where the leaves are labelled with vertices and nodes are labelled with
prime graphs. Such a decomposition is unique [7] modulo associativity of `, ⊗ and
◁.

2.3 From Formulae to Graphs 8

By abuse of notation, we represent these modular decomposition trees
(MDT) by drawing the labels of vertices instead of the vertices themselves. We
write `, ⊗ and ◁ for the n-ary prime connectives that extend the prime graphs of
size 2 and we write P for arbitrary prime graphs.

Example 2.2.3 (A Graph and its Modular Decomposition Tree [2, page 9]).

a b c d a b c d

f g f g

P4

⊗ P4 ` S4

f g a b c d f g a b c d

Definition 2.2.4. Let G be a graph, V ⊆ VG be a set of vertices and vnew /∈ VG

be a vertex. The graph obtained by compressing (or condensing) V into vnew is
the graph Gnew where

VGnew =(VG \ V) ∪ {vnew}
EGnew =(EG \ {(v1, v2) | v1 ∈ V or v2 ∈ V })

∪ {(vnew, v2) | v2 ∈ VG \ V, v1 ∈ V, (v1, v2) ∈ EG}
∪ {(v1, vnew) | v1 ∈ VG \ V, v2 ∈ V, (v1, v2) ∈ EG}

Gnew is thus the graph obtained by replacing the subgraph of G induced by V by
a single vertex, keeping the edges going in and out of the subgraph on the new
vertex.

2.3 From Formulae to Graphs

In the following section, we consider undirected graphs and introduce the corre-
spondence between logic formulae and graphs. We define a formula through the
following grammar:

Formula Grammar

⟨formula⟩ ::= ⟨atom⟩ | ◦ | ⟨par⟩ | ⟨tensor⟩ | ¬ ⟨formula⟩
⟨par⟩ ::= (⟨formula⟩ ` ⟨formula⟩)

⟨tensor⟩ ::= (⟨formula⟩ ⊗ ⟨formula⟩)

⟨atom⟩ ::≈ [a-z][a-z]∗

Here, we use the logical connectives ` (par) and ⊗ (tensor) from linear logic [11].
We have also equipped our grammar with the unit ◦ and the negation ¬. Logically,
the negation is defined inductively by setting ¬¬a = a for a an atom and defining
the De Morgan laws for two formulae ϕ and φ:

¬(ϕ` φ) = (¬ϕ⊗ ¬φ) and ¬(ϕ⊗ φ) = (¬ϕ` ¬φ)

2.3 From Formulae to Graphs 9

Additionally, the unit is self-dual, i.e. ¬◦ = ◦. We thus consider from now on that
the negation has been inductively applied from all formulas to their sub-formulas
such that only atoms are (singly) negated. Given a set A of atoms, we define its
completion ΩA as A ∪ {¬a | a ∈ A}.

We also note that given formulas ϕ, φ and γ, the following isomorphisms on
formulae hold:

• Associativity: ϕ` (φ` γ) ≡ (ϕ` φ)` γ, ϕ⊗ (φ⊗ γ) ≡ (ϕ⊗ φ)⊗ γ

• Commutativity: ϕ` φ ≡ φ` ϕ, ϕ⊗ φ ≡ φ⊗ ϕ

• Identity: ϕ` ◦ ≡ ϕ, ϕ⊗ ◦ ≡ ϕ

Recall now the previously defined prime graphs ` and ⊗ (2.2.1). For these
prime graphs we employ the notation `(|G,H|) = G`H and ⊗(|G,H|) = G⊗H
and treat these compositions as operations on graphs. We extend these operations
to labelled graphs by unifying the labelling functions’ domains and codomains. We
can now inductively define the graph associated to a formula ϕ.

Definition 2.3.1. Given a formula ϕ and the set of atoms Aϕ appearing in ϕ, we
define its associated graph JϕK = (VJϕK, EJϕK), labelled by ΩAϕ

, according to the
structure of ϕ:

J◦K → (∅,∅) (2.3.1)
JaK → ({vi},∅), lJϕK(vi) = a (2.3.2)
J¬aK → ({vi},∅), lJϕK(vi) = ¬a (2.3.3)
Jφ` ΦK → JφK ` JΦK (2.3.4)
Jφ⊗ ΦK → JφK ⊗ JΦK (2.3.5)

Here, when we write a in a formula, such as in the LHS of (2.3.2), we mean an
element a ∈ A. When we write vi in the vertex set of a graph, such as in the RHS
of (2.3.2), we are uniquely identifying the atom a on the LHS with vi, while also
labelling vi with a: lJϕK(vi) = a. This uniqueness is important so that no atom is
lost during the graph operations ` and ⊗.

Definition 2.3.2. A cograph is a graph that may be constructed recursively as
follows:

• For any vertex a, ({a},∅) is a cograph

• Given a family of cographs G1, . . . , Gn, (
⋃n

i=1 VGi
,
⋃n

i=1EGi
) is a cograph

• Given a cograph G, Ḡ is a cograph

Remark 2.3.1. The cographs correspond exactly to the graphs that are P4-free,
that is to say the graphs that do not have P4 as an induced subgraph of a set of
four vertices.

2.3 From Formulae to Graphs 10

Theorem 2 ([13, 17]). Let G be a graph, there exists a formula ϕ such that JϕK = G
if and only if G is a cograph.

This theorem tells us that standard proof systems defined on formulas that
correspond to our grammar are also proof systems on cographs. This fact is well
known and we do not go into the details of the inference rules of the proof system.
We do, however, require some notion of implication for such a proof system, which
we define using the notion of dual or negation of a graph.

Definition 2.3.3. For an ΩA-labelled graph G, the dual of G is denoted ¬G =
(V¬G, E¬G) and has the same edge and vertex sets as Ḡ = (VG, EḠ), the complement
of G. The label of v ∈ V¬G is then the dual of the label of v in G, that is to say:
l¬G(v) = ¬lG(v). ¬G is then also an ΩA-labelled graph.

We can now define the (linear) implication in the usual way: between two
graphs G⊸ H is defined as ¬G ` H. We can now extend our proof system on
cographs to a proof system on graphs called GS [1] (graphical proof system). The
proof system on cographs mentioned section corresponds to multiplicative linear
logic (MLL) with mix [5, 9, 11]. GS then extends MLL (what is provable in MLL
is also provable in GS) and constitutes a valid proof system once equipped with
the proper inference rules [1].

Finally, notice the correspondence between a formula’s term tree and the
modular decomposition of a graph:

Example 2.3.1.

ϕ := (a⊗ b)` (c⊗ d) →

`
⊗ ⊗

a b c d

G :=
a c

b d
→

`
⊗ ⊗

a b c d

Indeed, the MDT of a graph G corresponds exactly to the formula that G
represents. The modules are then the subformulas and the vertices correspond to
the atoms through a labelling function. This paradigm of MDT-as-formula extends
past MLL and continues to apply for logic on directed cographs [20], logic on
general graphs [1] and in work currently being done by L. Strassburger regarding
logic on general directed graphs.

3 | The Algorithm

We base our implementation on the algorithm detailed in the first paper on
modular decomposition [15]. Although the original algorithm contains an error
(see Remark 3.2.1), we retain the original idea and extend it to directed graphs.
The final algorithm thus functions on both directed and undirected graphs.

The modular decomposition algorithm proceeds by successively compressing
the graph until only one vertex is left. This is done in two distinct steps. We first
detect the prime graphs of the form `, ⊗ and ◁ and compress them until there are
none in the graph. We then look for the smallest maximal modules and compress
them:

Algorithm 1: Modular Decomposition Overview
Input :An atomic graph, graph
Output :The graph condensed module-by-module to a single vertex

while length(Vgraph) > 1 do
/* Compress all `, ⊗ and ◁ until there are none */
do

prevGraph = graph;
graph = Compress `, ⊗ and ◁ ; // Algorithm 2

while prevGraph ̸= graph;

graph = Compress smallest maximal modules ; // Algorithm 3

return graph;

3.1 Connective Compression

Let G be a graph. We use the following method to identify modules of size 2. let
v1, v2 ∈ VG, if suc(v1) \ {v2} = suc(v2) \ {v1} and pred(v1) \ {v2} = pred(v2) \ {v1}
then v1 and v2 share a module. Then:

• if v1 v2 then v1 and v2 are both under the same ⊗ node

• if v1 v2 then v1 and v2 are both under the same ` node

11

3.1 Connective Compression 12

• if v1 v2 or v2 v1 then v1 and v2 are both under the same ◁ node

To compress the modules corresponding to the `, ⊗ and ◁ connectives, we
iterate over all pairs of vertices and compare their successors and their predecessors.
If they share the same successors and predecessors, we know that they belong to the
same module and we can use the edge relation they share to determine what type
of connective they correspond to. The following algorithm details the procedure:

Algorithm 2: Compression of `, ⊗ and ◁ connectives
Input :A graph
Output :The graph where all the connective modules have been

compressed

modules = emptySet;
addedVertices = emptySet;
for vi ∈ Vgraph do

for vj ∈ Vgraph, vj ̸= vi do
if shareModule(vi, vj) ; // Remark 3.1.1
then

if vi ∈ addedVertices then
addToSameModule(modules, vi, vj);
addedVertices.add(vj);

else if vj ∈ addedVertices then
addToSameModule(modules, vj, vi);
addedVertices.add(vi);

else
addedVertices.add(vi);
addedVertices.add(vj);
if vi ∈ suc(vj) then

if vj ∈ suc(vi) then
modules.add(Tensor([vi, vj]));

else
modules.add(Before([vi, vj]));

else if vj ∈ suc(vi) then
modules.add(Before([vj, vi]));

else
modules.add(Par([vi, vj]));

Remark 3.1.1. In Algorithm 2, we know that two vertices vi and vj share the
same connective module when suc(vi) \ {vj} = suc(vj) \ {vi} and pred(vi) \ {vj} =
pred(vj) \ {vi}.

Note that the procedure described in Algorithm 2 may miss the transitivity of

3.2 Maximal Module Compression 13

some configurations (for example, it only detects the first two vertices in a before
operation since those are the only ones that are detected by shareModule()). To
remediate this, we compress nodes during the creation of the tree (see subsection
3.3).

3.2 Maximal Module Compression

Once we have removed all the potential connectives from our graph, we are tasked
with finding the smallest maximal prime subgraphs. This requires us to first find
all of the maximal prime subgraphs, before selecting the smallest ones. In order
to find all of the maximal prime subgraphs, it is easiest to compute the maximal
prime subgraphs containing a given edge. Doing this for all edges, choosing the
smallest prime subgraph associated to an edge containing a specific vertex, then
removing the largest of two prime subgraphs when they intersect gives us a list of
disjoint maximal prime subgraphs, which we can then compress. The procedure is
described in Algorithm 3.

Algorithm 3: Smallest Maximal Module Compression
Input :A graph G
Output :G′ obtained by compressing the smallest maximal modules of G

smallestMaxModules = array[length(VG)];
possibleMaxModules = array[length(VG)][emptySet];
for (vi, vj) ∈ EG do

possibleMaxModules[i].add(maxModule({vi, vj}));
possibleMaxModules[j].add(maxModule({vi, vj}));

for vi ∈ VG do
smallestMaxModules[i] = smallest(possibleMaxModules[i]);

res = set(smallestMaxModules);
for Mi ∈ smallestMaxModules do

for mj ∈ Mi,mj ̸= mi do
if |Mj| ≥ |Mi| then

res.remove(Mj);
else

res.remove(Mi);

for vset ∈ res do
G = compress(G, vset);

return G;

Finding the maximal module containing a set (the maxModule() function) is

3.3 Tree Recovery 14

done by looking at which vertices are related by one of the edge relations to some
but not all of the vertices in the set. Note that this holds for both directed and
undirected graphs. We repeat this procedure while we keep finding new vertices
and add them to our set. This yields the maximal module containing our original
set, which in Algorithm 3 is a set of vertices connected by an edge.

Remark 3.2.1. In the original paper on the modular decomposition of graphs [15],
the algorithm we adapted into Algorithm 3 is incorrect. Indeed, when comparing
the size of the smallest maximal modules, the original article added the constraint
that we only consider vertices mj ∈ Mi such that j > i. This condition causes
errors when i is the last index but the module Mi is not minimal.

Example 3.2.1 (Counterexample to the original algorithm).

5
1 4

2 3

If the vertices of the previous graph are indexed by their label, then running the
original algorithm on it fails as it fails to see that the smallest maximal module
defined on 5 is larger than the smallest maximal modules defined on the other
vertices.

3.3 Tree Recovery

During compression, we need to preserve the structure of every prime subgraph
being compressed (otherwise we are left with a single vertex we cannot unroll
after the algorithm is done). In order to do so, we keep a global state variable
containing a hash table which maps from the ids to vertices. We can them simply
store any vertex we are about to compress as we know that once it is compressed
it will not be changed by the algorithm any further.

Once the compression algorithm has finished, we are then left with two elements
from which we wish to recover our MDT: a compressed graph with a single vertex
and the state with its hash table. This is sufficient for us to unfold our condensed
graph into a tree naturally (see Figure 4.3 for the correspondence from the condensed
graph vertices to the tree nodes). We start from our single-vertex graph and get
its id. We then find the corresponding vertex v and compute its MDT according
to Algorithm 4.

3.3 Tree Recovery 15

Algorithm 4: Tree Unfolding Algorithm
Input :A vertex v of the condensed graph
Output :The MDT of the graph with root v

rec unfoldTree(v):
/* Get the set of vertices that were condensed into v */
childVertices = children(v);

successors = emptyList;
for child in childVertices do

successors.push(unfoldTree(child));

node = createNode(v, successors);
/* node depends on the connective of v */
return node

4 | Our Implementation

From the previous section, we know to convert a graph to its MDT, our program
finds the prime graphs composing our graph, compressing them into single vertices.
We do this recursively until we have obtained a graph with a single vertex. The
last vertex becomes the root of our MDT, which we can then "unfold". This
procedure leaves us with several design choices/questions. What type do we define
to represent a graph? How do we make this type work with compressing vertices?
How do we represent the modular decomposition tree? We detail the various types
we use during this process in the following sections.

4.1 Graphs

In order to define graphs, we first need to define vertices. Keeping in mind our
characterisation of the modular decomposition, we know that the vertices of our
graph will be labelled with a (possibly negated) atom. In order to represent vertices,
it is thus sufficient to use a label from some set of labels corresponding to atoms, a
polarisation to indicate whether the atom is negated, and a unique identifier.

type atom = {
label : string;
pol : bool;

}

type node =
| Atom of atom
| Tensor of ISet.t
| Par of ISet.t
| Before of int list
| Prime of IMap.t

Figure 4.1: Definition of graph nodes

A compressed vertex must contain the information of the structure that we just
compressed and we thus use the node type defined in Figure 4.1, paired with a
unique id to represent a vertex:

type vertex = { connective : node; id : int; }

Now that we have defined out vertex, we can defined our graph in the following

16

4.2 Modular Decomposition Trees 17

way:

type graph = {
nodes : VSet.t;
edges : VMap.t;
edges_from : VMap.t;

}

Where VSet.t is the type of sets of vertices and VMap.t is the type of maps
(dictionaries) with vertices as keys and sets of vertices as values. The representation
of a directed graph is as follows: nodes is the set of vertices of our graph; edges
is a map from vertices to their successors; edges_from is a map from vertices to
their predecessors. If the graph is undirected, we simply use edges to represent
the nodes connected to a vertex.

4.2 Modular Decomposition Trees

We would like to use standard recursive types to define our MDT. However, we
run into a problem when representing the prime nodes of our graph. We would like
our prime nodes to represent a graph structure where the nodes in the graph are
MDTs. But MDTs should themselves be allowed to carry prime graphs as nodes.
Although it is possible to create such a structure with mutually recursive types, we
find that the structure is quickly bloated and somewhat difficult to work with. We
opt instead to represent the structure of the prime graphs as follows:

type id_graph = { nodes : int list; edges : (int * int) list; }

Here, we start using lists and tuples instead of sets and maps as the main
operations we want to do on these structures are serializing and deserializing. Thus,
nodes is a list of identifiers corresponding to the identifiers of the children of the
prime node in the tree. Similarly, edges is the list of edges between the children of
the prime node in the tree. Although we still require mutually recursive types, they
are now much lighter, and we can define our MDT type as shown in Figure 4.2.

type connective =
| Atom of atom
| Tensor of tree list
| Par of tree list
| Before of tree list
| Prime of id_graph *

(tree list)

and tree = {
connective :

connective;
id: int;
}

Figure 4.2: MDT type definition

4.3 State and Subsets 18

We do not include a type for the empty tree as it adds overhead without providing
any modelling benefits. We consider the tree lists of Tensor and Par to be unordered
whereas in the the tree list of Before carries with it the order of application. Indeed,
Before [id1; id2; id3] corresponds to the graph ◁(|G3, G2, G1|). The head of
the list is thus the last element in the transitive chain.

4.3 State and Subsets

During compression, we need to store somewhere that a compressed vertex v
corresponds to such or such prime graph in order to ensure that we do not lose
the structure of our graph. We use a state variable with a hash table that takes
identifiers as keys and maps them to the vertex with the corresponding id. We also
store the total number of vertices in order to ensure that vertices created during
compression have unique ids:

type state = {
mutable total_vertices : int;
id_map : (int , Vertex.t) Hashtbl.t;

}

Before compression, we need to not only store the set of vertices we are intending
on compressing but also mark the set depending on the type of prime graph we are
currently detecting. As such, we define

type subset =
| Singleton of vertex
| Clique of VSet.t (* Corresponds to Tensor *)
| Before of vertex list
| IndSet of VSet.t (* Correspons to Par *)

4.4 From Condensed Graph to MDT

Once we have totally compressed our graph, we are ready to unfold it into a
modular decomposition tree. This is done by the means of Algorithm 4, where we
get a vertex from it’s id using the state.id_map. We find the children of a given
vertex v using the information stored in v.node. The procedure we follow then
depends on the type of v.node:

• v.node = Atom atom: return the tree composed of a single node corresponding
to atom

• v.node = Tensor iset: recursively compute a list of subtrees from the ids
in iset, if any of the subtrees are also tensors, replace them in our subtree list
with the elements of their own subtree list

4.5 From a MDT to its Graph 19

• v.node = Par iset: recursively compute a list of subtrees from the ids in
iset, if any of the subtrees are also pars, replace them in our subtree list with
the elements of their own subtree list

• v.node = Before int list: recursively compute a list of subtrees from the
ids in int list, if any of the subtrees are also befores, replace the subtree in
the successor list with the elements of the subtree’s subtree list

• v.node = Prime imap: create an id_graph from imap and recursively com-
pute the list of subtrees corresponding to the nodes of id_graph

type node =
| Atom of atom
| Tensor of ISet.t
| Par of ISet.t
| Before of int list
| Prime of IMap.t

−→

type connective =
| Atom of Graph.atom
| Tensor of tree list
| Par of tree list
| Before of tree list
| Prime of id_graph *

(tree list)

Figure 4.3: Comparison of graph node and tree node connective types

Recursively continuing this procedure gives us a natural way of constructing
the MDT.

4.5 From a MDT to its Graph

The structure of the MDT allows us to use a simple recursive algorithm to con-
struct the corresponding graph [18]. We need only recursively find the vertices
corresponding to the successors of a node in the tree before drawing edges between
them as specified by the connective of the node of the tree. For example, we show
in Figure 4.5 how we deal with the ◁ connective.

4.5 From a MDT to its Graph 20

...
| Before tl ->

let nel = List.map tl ∼f:(tree_to_graph_r) in
let nodes , edges = List.fold nel ∼init:(Set.empty

(module Graph.Vertex), [])
∼f:(fun (vsetacc , elacc) (vset , el) ->

let vertices = Set.union vsetacc vset in
let edge_base = el @ elacc in
let edges = join_sets ∼symmetric:false vset vsetacc

in
vertices , edges @ edge_base)

in
nodes , edges

...

Figure 4.4: Transformation from Before tree node to Before graph vertex

5 | Interactivity Features

5.1 Interacting with the Graph

The main purpose of our tool is to allow the exploration of graphs and their
structure. To this end, we allow the user to draw vertices and edges; to delete
vertices and edges and to move vertices around the canvas. The following section
may serve as a user manual for these interactions.

Figure 5.1: Cy1, the canvas corresponding to graph interaction

21

5.1 Interacting with the Graph 22

5.1.1 Mouse inputs

Although the cytoscape.js library supports tactile interactions, we only define
behaviour for inputs using a mouse or track-pad.

Action Command

Selecting a vertex or an edge Shift + Click to successively select elements.
Shift + Click + Drag to create a selection box.

Moving around the canvas Click + Drag on the background.
Moving a vertex or selection Click + Drag on one of the elements.
Deselecting elements Click the background
Drawing Edges Select source(s) and click a target vertex.
Negating a selection Right Click one of the elements.

5.1.2 Keyboard inputs

Action Command

Creating a new vertex Type an alphanumeric character while hovering over the
desired location of the vertex.

Remove a selection Pressing backspace will remove the current selection.

5.1.3 Buttons

The graph canvas is equipped with several buttons

• Clear Graph: Removes all vertices from the graph (adds them to the undo
queue)

• Clean Layout : Uses a physics simulation to compute a force-directed layout
called fCose [4]. Is randomized and will not produce the same result when
run multiple times.

• Center Graph: Centers the viewport on the graph.

• Download Graph: Downloads the graph serialized into Json.

• Import Graph: Allows the user to upload a json file describing the graph they
would like to work on. Clears the previous graph before adding the new one.

• Undo: Undoes the previous graph topology change, whether that be the
addition or deletion of elements.

5.2 Interacting with the Decomposition Tree 23

5.2 Interacting with the Decomposition Tree

Since we are interested in the manipulation of the structure of graphs, we allow
the user convert from a modular decomposition tree to a graph.

Figure 5.2: Cy2, the canvas corresponding to tree interaction

5.2.1 Mouse Inputs

Action Command

Selecting a node or an edge Shift + Click to successively select elements.
Shift + Click + Drag to create a selection box.

Moving around the canvas Click + Drag on the background.
Moving a node or selection Click + Drag on one of the elements.
Deselecting elements Click the background
Drawing Edges Select a single source and click a target vertex,

only allowed edges will be drawn.
Negating a selection Right Click one of the elements.
Setting the root Double Click on a node.
Add a node to a compound Select the compound and Click on the node

5.3 Additional Features 24

5.2.2 Keyboard inputs

Action Command

Creating a new leaf Type an alphanumeric character while hovering over
the desired location of the leaf.

Create a new node Type one of the characters given by Figure 5.3
Removing a selection Pressing backspace will remove the current selection.
Adding to a compound Select a compound and add a node in the usual way

"&" : ` "*" : ⊗ ">" : ◁ "∧" : compound

Figure 5.3: Character to node mapping

5.2.3 Buttons

The tree canvas is equipped with several buttons

• Clear Tree: Removes all nodes from the tree (adds them to the undo queue)

• Center Tree: Centers the viewport on the tree.

• Download Tree: Downloads the tree serialized into Json.

• Undo: Undoes the previous tree topology change, whether that be the addition
or deletion of elements.

5.3 Additional Features

We provide with the implementation three additional buttons. The user may toggle
whether they wish to work on directed or undirected graphs. The user may compute
the modular decomposition of the graph in Cy1 and display it as a MDT in Cy2
with the Get Modular Decomposition button. The user may compute the graph
corresponding to the tree in Cy2 and display it in Cy1 with the Get Graph button.
Note that a tree will only be read if all of the nodes are connected to the root.

When downloading a graph or a modular decomposition tree, we serialize to
Json according to Figure 5.4 and Figure 5.5 respectively.

5.3 Additional Features 25

{
"nodes": [

{
"id": 1,
"label": "1",
"polarisation": true

},
...

],
"edges": [

{
"source": 1,
"target": 2

},
...

]
}

Figure 5.4: Serialization of a graph

{
"node": { "connective": "tensor", "id": 12 },
"successors": [

{
"node": { "connective": "atom", "id": 8 },
"successors": []

},
...

]
}

Figure 5.5: Serialization of a tree

6 | Running the code

6.1 Calling OCaml Functions from the Browser

As previously mentioned, the frontend of the project is implemented with the
Cytoscape.js library. We make use here of two canvases (or cytoscape objects)
to represent the full graph in one (cy1) and the modular decomposition tree in
the other (cy2). We use the default interactions provided by the library to select
vertices and edges, and to grab and moves vertices.

We implement directly in JavaScript all the interactions that remain within a
single canvas, such as adding and deleting vertices, drawing edges, etc. We thus
restrict the communication between the JavaScript library and the Ocaml code to
a minimum and are left with the following interactions between the two:

1. Reading and drawing on the graph canvas

2. Reading and drawing on the MDT canvas

3. Calling graph decomposition and tree recomposition from the frontend

Thankfully, the Js_of_Ocaml package makes it quite easy to interact between
JS and Ocaml. For example, we are able to call arbitrary JavaScript functions from
Ocaml, including Cytoscape.js functions. For example, the two following lines of
code thus return the same object.

(* Ocaml *)
let root_arr = cy## nodes (Js.string ".root")

/* JavaScript */
let root_arr = cy.nodes(".root")

We then expose the following functions from Ocaml to allow their use from
JavaScript:

• decompose(): Read the graph in cy1, compute its modular decomposition
tree, draw the tree in cy2

26

6.2 Compiling the Code 27

• recompose(): Read the tree in cy2, compute the corresponding graph, draw
the graph in cy1

• isPrime(graph): Given a graph in the format of a cytoscape collection,
return whether it is prime or not

Choosing this format means that, once compiled, all the necessary algorithms can
be run in JavaScript by the browser. The experience from the user’s point of view
is then the same as opening any other html file.

6.2 Compiling the Code

Given that the project is designed to run on a server or locally, the reader may be
interested in building and running the program themselves. The code is available at
https://github.com/remyjck/modular_decomposition and can be cloned using

git clone https://github.com/Remyjck/modular_decomposition.git

To build the code, we require the Ocaml Package Manager (opam). We also require
the installation of Ocaml 4.13 or higher. Once these prerequisites are installed,
install the ocaml libraries used in the project by running the following command
from inside the repository.

opam install . −−deps−only

Once the libraries have been installed, the project can be built using:

dune build src/main.bc.js

This produces a JavaScript file that is used by index.html to run the modular
decomposition algorithm. All that remains is then to open index.html with a
browser to run the project.

Some unit tests are included in the project, to run them, it is necessary to first
build the full project. This can be done in one command:

dune build && dune runtest

The above works for Unix-based systems (Linux, MacOS) but compiling on
windows may prove difficult. The easiest solution is to use the Windows Subsystem
for Linux (WSL) and compile the project from there.

https://github.com/remyjck/modular_decomposition
https://opam.ocaml.org/doc/Install.html
https://ocaml.org/docs/install.html

7 | Conclusion

We have created a tool that allows the user to interactively build graphs in order
to compute their modular decomposition. This tool works for both directed and
undirected graphs that are labelled by either atoms or their negation. We also
allow the creation of modular decomposition trees in order to compute their graphs.
Additional features provided are the possibility to upload and download graphs
and modular decomposition trees in Json format.

The interactivity features are intended to enable logicians to easily build and
modify graphs without having to serialize them by hand in order to view them.
We thus hope that this tool will be of use for future research on logic and graphs.
Indeed, the notions presented in sections 1.1 and 2.3 are only the foundations of
the relation between graphs and logical connectives.

We can also note that we have not found any online tools for modular decom-
position other than this tool. It may thus be used not only for logic but also for
graph theory in general, whether for practical or educational purposes.

7.1 Future work

There are several ways in which the tool can be extended. There are always
improvements to the GUI that can be made, such as extending the tool to work
with touchscreens and allowing vertex re-labelling. Some more important possible
future changes are the implementation of a linear time modular decomposition
algorithm [22] and the possibility to view the modular decomposition as nested
graphs (not unfolding the compressed graph into a modular decomposition tree,
rather drawing compound nodes where the root of the tree is the parent of all
compound nodes).

This tool may also serve as a first prototype for working with logics on graphs.
A natural predecessor would be a tool for applying inference rules on graphs
(such as the inference rules found in GS). To this end, the code for the modular
decomposition could certainly be reused as well as some interactivity elements.

28

Acknowledgments

This bachelor thesis was conducted under the supervision of Lutz Strassburger,
whom I would like to extensively thank for his guidance and structuring of the
project. I would like to also thank the whole PARTOUT team at INRIA for
the warm welcome they offered me. In particular, I would like to thank Bahar
Carabetta for making the administrative parts of my internship as smooth as
possible. Finally, I would like to specifically thank Giti Omidvar for helping me
around the office during the early days of the thesis and Prof. Kaustuv Chaudhuri
for his technical advice.

References

[1] M. Acclavio, R. Horne, and L. Straßburger. Logic beyond formulas: a proof
system on graphs. In Proceedings of the 35th Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS ’20: 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 38–52, Saarbrücken Germany. ACM,
July 8, 2020.

[2] M. Acclavio, R. Horne, and L. Strassburger. An analytic propositional proof
system on graphs, 2020.

[3] M. Acclavio and R. Maieli. Generalized connectives for multiplicative linear
logic. In CSL 2020 - 28th EACSL annual conference on Computer Science
Logic, volume 152, 6:1–6:15. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Jan. 2020.

[4] H. Balci and U. Dogrusoz. Fcose: a fast compound graph layout algorithm
with constraint support. IEEE Transactions on Visualization and Computer
Graphics :1–1, 2021.

[5] G. Bellin. Subnets of proof-nets in multiplicative linear logic with mix. Math-
ematical Structures in Computer Science, 7(6):663–669, 1997.

[6] K. Chaudhuri. Subformula Linking for Intuitionistic Logic with Application to
Type Theory. In CADE 2021 - 28th International Conference on Automated
Deduction, volume 12699, pages 200–216. Springer International Publishing,
July 2021.

[7] M. Chein, M. Habib, and M. C. Maurer. Partitive hypergraphs. Discrete
Mathematics, 37(1):35–50, Jan. 1, 1981.

[8] A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures:
A Framework for Decomposition and Transformation of Graphs. WORLD
SCIENTIFIC, Aug. 1999.

[9] A. Fleury and C. Retoré. The mix rule. Mathematical Structures in Computer
Science, 4(2):273–285, 1994.

[10] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader.
Cytoscape.js: a graph theory library for visualisation and analysis. Bioinfor-
matics, 32(2):309–311, Jan. 15, 2016.

[11] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[12] J.-Y. Girard. Multiplicatives. In G. Lolli, editor, Logic and Computer Science:

New Trends and Applications, pages 11–34. Rosenberg & Sellier, 1987.

30

REFERENCES 31

[13] A. Guglielmi. A system of interaction and structure. ACM Trans. Comput.
Logic, 8(1):1–es, Jan. 2007.

[14] M. Habib and C. Paul. A survey on algorithmic aspects of modular decom-
position, 2009.

[15] L. James, R. Stanton, and D. Cowan. Graph decomposition for undirected
graphs. Utilitas Mathematica, Jan. 1, 1972.

[16] R. M. McConnell and J. P. Spinrad. Linear-time modular decomposition
and efficient transitive orientation of comparability graphs. In Proceedings
of the fifth annual ACM-SIAM symposium on Discrete algorithms, SODA
’94, pages 536–545, USA. Society for Industrial and Applied Mathematics,
Jan. 23, 1994.

[17] R. Möhring. Computationally tractable classes of ordered sets. In Jan. 1989,
pages 105–193.

[18] C. Papadopoulos and K. Vogklis. Drawing graphs using modular decomposi-
tion. In volume 11, Sept. 2005.

[19] C. Retoré. Handsome Proof-nets: R&B-Graphs, Perfect Matchings and Series-
parallel Graphs. Research Report RR-3652, INRIA, 1999.

[20] C. Retoré. Pomset Logic as a Calculus of Directed Cographs. Research Report
RR-3714, INRIA, 1999.

[21] C. Retoré. Pomset logic: a non-commutative extension of classical linear logic.
In P. de Groote and J. Roger Hindley, editors, Typed Lambda Calculi and
Applications, pages 300–318, Berlin, Heidelberg. Springer Berlin Heidelberg,
1997.

[22] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simple, linear-time modular
decomposition. arXiv:0710.3901 [cs], Mar. 20, 2008. arXiv: 0710.3901.

[23] A. Tiu. A system of interaction and structure ii: the need for deep inference.
ArXiv, abs/cs/0512036, 2006.

[24] J. Vouillon and V. Balat. From bytecode to javascript: the js_of_ocaml
compiler. Softw. Pract. Exper., 44(8):951–972, Aug. 2014.

https://arxiv.org/abs/0710.3901

A | Examples

Figure A.1: Modular Decomposition of an Undirected Graph

Figure A.2: Modular Decomposition of a Directed Graph

32

	1 Motivation and Related work
	1.1 Logic and Graphs
	1.2 Modular Decomposition Algorithms

	2 Modular Decomposition of Graphs
	2.1 Graphs
	2.2 Modules
	2.3 From Formulae to Graphs

	3 The Algorithm
	3.1 Connective Compression
	3.2 Maximal Module Compression
	3.3 Tree Recovery

	4 Our Implementation
	4.1 Graphs
	4.2 Modular Decomposition Trees
	4.3 State and Subsets
	4.4 From Condensed Graph to MDT
	4.5 From a MDT to its Graph

	5 Interactivity Features
	5.1 Interacting with the Graph
	5.1.1 Mouse inputs
	5.1.2 Keyboard inputs
	5.1.3 Buttons

	5.2 Interacting with the Decomposition Tree
	5.2.1 Mouse Inputs
	5.2.2 Keyboard inputs
	5.2.3 Buttons

	5.3 Additional Features

	6 Running the code
	6.1 Calling OCaml Functions from the Browser
	6.2 Compiling the Code

	7 Conclusion
	7.1 Future work

	References
	A Examples

